

Digital Signal Processors: Architectures, Implementations, and Applications

By Sen M. Kuo, Woon-Seng S. Gan

Download now

Read Online

Digital Signal Processors: Architectures, Implementations, and Applications

By Sen M. Kuo, Woon-Seng S. Gan

This book offers learners a hands-on approach to understanding architecture and programming of DSP processors, and the design of real-time DSP systems. It contains real-world applications, and implementation of DSP algorithms using both the fixed-point and floating-point processors. **KEY TOPICS** Other topics include FIR Filtering, IIR Filtering, Fast Fourier Transforms, and Adaptive Filtering. For use as a desktop reference for practicing engineers to learn DSP concepts and to develop real-time applications at work.

 [Download Digital Signal Processors: Architectures, Implementations, and Applications.pdf](#)

 [Read Online Digital Signal Processors: Architectures, Implementations, and Applications.pdf](#)

Digital Signal Processors: Architectures, Implementations, and Applications

By Sen M. Kuo, Woon-Seng S. Gan

Digital Signal Processors: Architectures, Implementations, and Applications By Sen M. Kuo, Woon-Seng S. Gan

This book offers learners a hands-on approach to understanding architecture and programming of DSP processors, and the design of real-time DSP systems. It contains real-world applications, and implementation of DSP algorithms using both the fixed-point and floating-point processors. **KEY TOPICS** Other topics include FIR Filtering, IIR Filtering, Fast Fourier Transforms, and Adaptive Filtering. For use as a desktop reference for practicing engineers to learn DSP concepts and to develop real-time applications at work.

Digital Signal Processors: Architectures, Implementations, and Applications By Sen M. Kuo, Woon-Seng S. Gan **Bibliography**

- Sales Rank: #2884892 in Books
- Published on: 2004-04-05
- Ingredients: Example Ingredients
- Original language: English
- Number of items: 1
- Dimensions: 9.68" h x 1.22" w x 7.06" l, 2.36 pounds
- Binding: Hardcover
- 624 pages

 [Download Digital Signal Processors: Architectures, Implementations, and Applications.pdf](#)

 [Read Online Digital Signal Processors: Architectures, Implementations, and Applications.pdf](#)

Download and Read Free Online Digital Signal Processors: Architectures, Implementations, and Applications By Sen M. Kuo, Woon-Seng S. Gan

Editorial Review

Excerpt. © Reprinted by permission. All rights reserved.

Real-time digital signal processing (DSP) using general-purpose digital signal processors is a very hot subject and challenging work in today's engineering fields. Real-time DSP provides an effective way for designing and implementing a variety of DSP algorithms for real-world applications. In fact, many universities and industrial companies are currently engaged in real-time DSP research, education, and development. With DSP penetrating into various applications, the demand for high-performance digital signal processors has expanded rapidly in recent years. It has become increasingly important for today's students and practicing engineers to master not only the theory of DSP, but also the techniques involved in real-time DSP system design and implementation.

Digital Signal Processors: Architectures, Implementations, and Applications offers readers a hands-on approach to understanding the architecture and programming of DSP processors, the design of real-time DSP systems and real-world applications, and the implementation of DSP algorithms using both fixed-point and floating-point processors, including the TMS320C2000, TMS320C54x, TMS320C55x, TMS320C62x, TMS320C64x, TMS320C3x, and TMS320C67x. This book is intended as a text for senior/graduate-level college students. With its emphasis on DSP implementation, experiments, and applications, this book can also serve as a desktop reference for practicing engineers who want to learn DSP concepts and develop real-time DSP applications at work. The minimum prerequisite requirements are a basic understanding of the concepts of signals and systems, the C language, and assembly programming.

This book gives an overview of real-time DSP technologies. To illustrate the hands-on aspects of real-time DSP applications effectively, MATLAB and Simulink are introduced for use in the design, analysis, and implementation of DSP algorithms. In addition, Code Composer Studio (CCS) for the TMS320C54x and TMS320C55x is used for lab experiments, projects, and applications. These useful tools effectively illustrate the concepts of real-time DSP and bridge the gap between theoretical signal processing and real-time implementation. By completing the hands-on exercises and problems, readers can gain practical knowledge of real-time implementation issues. In using the advanced DSP architecture for fast software development and maintenance, the mixing of C and assembly programs is emphasized.

This book uses a two-level approach in the hands-on exercises. First, we introduce the software tools and guide readers step by step in designing, simulating, verifying, and finally developing programs in both floating- and fixed-point formats. Then, we provide additional exercises and problems in order to reinforce readers' understanding of these topics. The MATLAB, Simulink, C, and assembly programs that implement many DSP examples and applications are listed throughout the book and are available on the companion CD and at www.prenhall.com/kuo and www.ntu.edu.sg/home/ewsgan/book.htm. Several real-world data files for some practical applications introduced in the book can also be found at this website. The use of the Web allows the authors to continuously update the program and data files referenced in the book as the software and/or its interface is updated.

This book is organized into three main sections: application, architecture and implementation. (1) The application section (Chapters 1-3) introduces DSP algorithms and applications, processor architectures, peripheral components, and real-time implementation issues. (2) The architecture section (Chapters 4 and 5) gives detailed descriptions of fixed-point and floating-point processors with a focus on software

development. (3) The implementation section (Chapters 6-9) uses a top-down approach in the design, simulation, verification, and final implementation of commonly used DSP algorithms on both fixed- and floating-point processors. Additional hands-on experiments and practical applications using MATLAB, C, and CCS are given in Appendix B. Relevant coding issues and design examples that address connections of peripheral devices with DSP processors for certain applications are introduced in Appendix C.

Chapter 1 gives an overview of real-time DSP systems and applications, processor architectures, software and hardware development issues, and system-design considerations. This chapter lays out the framework for subsequent chapters. The experiment in the last section introduces CCS, an integrated software development tool, in a step-by-step manner. Chapter 2 reviews some fundamental DSP concepts, which are used to explain the topics given in subsequent chapters. This chapter only summarizes key points; as such, readers who are already familiar with DSP theories may skip Chapter 2. However, this chapter does provide numerous useful examples that serve as an introduction to using MATLAB and C to solve DSP problems, and it also introduces some advanced features of CCS that are useful for experiments given in subsequent chapters. Chapter 3 introduces a real-time implementation of DSP algorithms. Several practical topics are explained, such as fixed-point and floating-point number representations and arithmetic, programming issues to satisfy real-time constraints, and peripherals linked to DSP processors. In addition, a hands-on approach using fixed-point C programming in CCS is used to show some important fixed-point implementation issues.

Chapters 4 and 5 introduce architecture, instruction set, programming, and system-design issues for several fixed-point and floating-point DSP processors. These two chapters provide a comprehensive understanding of how to program different DSP processors, and they highlight the strengths and weaknesses of each processor. Examples and experiments demonstrate important differences between fixed-point and floating-point processors. Due to their complexity and length, the instruction sets of the major DSP processors used in this book are not included in the appendices. However, these instruction sets are readily available in the **Help** menu of CCS and on the websites listed in Appendix E.

Chapters 6, 7, 8, and 9 introduce the design, analysis, and software implementation of some commonly used DSP algorithms, which include finite-impulse response (FIR) filtering, infinite-impulse response (IIR) filtering, the fast Fourier transform (FFT), and adaptive filtering using fixed-point and floating-point DSP processors. Implementation of these algorithms on different processors serves to emphasize many of the important characteristics and features involved in programming different processors. It is important to note that a systematic approach is developed to guide readers through the different stages of DSP software development. We begin with floating-point C on general-purpose computers, and we continue with fixed-point C on C5000 processors, fixed-point C using C5000 intrinsics, and assembly programming. Finally, we use fixed-point C to call assembly-optimized routines in C5000 DSP libraries.

A quick reference guide on the use of MATLAB with DSP-related toolboxes and on the use of Simulink with supporting DSP blocksets is given in Appendix A. This appendix helps familiarize readers with these useful MATLAB tools for signal processing. We also introduce two powerful interactive tools, the Signal Processing Tool and the Filter Design and Analysis Tool, which are very effective in the design and evaluation of DSP algorithms for both fixed-point and floating-point implementations. Appendix B provides additional hands-on experiments, practical applications, and in-depth design projects. Appendix C discusses integrated system-design problems involving DSP processors with peripheral components. Appendix D lists and describes all of the program and data files used in this book, and Appendix E lists many websites that provide useful information on DSP.

This book can be used for courses with different emphases. A course on DSP algorithms and applications might begin with Appendix A, proceed with Chapters 1, 3, and end with the materials and experiments in Chapters 6-9. A course on DSP architecture might focus on Chapters 1, 3, 4, and 5 and on Appendix C. The

experiments at the end of Chapters 6-9 and at Appendix B also give more insight into the characteristics of DSP processors. Finally, a course that concentrates on real-time DSP system design might start with Chapters 1 and 3, continue with a focus on the C5000 DSP architectures in Chapters 4 and 5, and end with the design and implementation of DSP algorithms using C5000 processors in Chapters 6-9 and in Appendices B and C. The end-of-chapter problems are separated into two groups: Part A includes computer-related problems that use MATLAB, C, and CCS, and part B consists of traditional paper-and-pencil problems that reinforce basic DSP principles.

The intention of this book is to provide wide coverage of real-time DSP in a practical manner without relying too heavily on the use of mathematics. A unique feature of this book is its recurring links between the floating-point world of simulation and the fixed-point world of real-time implementation using C and assembly programs. Readers can select different topics, processors, and experiments and can work toward an understanding of the important concepts of architectures, implementations, and applications in real-time DSP.

Throughout this book, we use several software tools in examples, experiments, and problems. These software tools are commonly used in universities and industrial companies. These tools and their respective versions are listed next in alphabetical order:

- Code Composer Studio™ Version 2.10 from Texas Instruments
- DSP Blockset Version 5.0 from The MathWorks
- Embedded Target for Texas Instruments TMS320C6000™ DSP Platform Version 1.0 from The MathWorks
- Fi...

Users Review

From reader reviews:

Howard Kincaid:

As people who live in the particular modest era should be up-date about what going on or info even knowledge to make these people keep up with the era that is always change and move ahead. Some of you maybe can update themselves by examining books. It is a good choice for you but the problems coming to anyone is you don't know which you should start with. This Digital Signal Processors: Architectures, Implementations, and Applications is our recommendation so you keep up with the world. Why, because book serves what you want and want in this era.

Carrie Wilson:

People live in this new morning of lifestyle always try to and must have the time or they will get great deal of stress from both everyday life and work. So , when we ask do people have time, we will say absolutely without a doubt. People is human not just a robot. Then we consult again, what kind of activity do you possess when the spare time coming to you of course your answer will certainly unlimited right. Then ever try this one, reading textbooks. It can be your alternative within spending your spare time, the book you have read is Digital Signal Processors: Architectures, Implementations, and Applications.

Marcella Cook:

What is your hobby? Have you heard which question when you got college students? We believe that that problem was given by teacher with their students. Many kinds of hobby, Everyone has different hobby. And you also know that little person similar to reading or as reading become their hobby. You have to know that reading is very important as well as book as to be the thing. Book is important thing to include you knowledge, except your current teacher or lecturer. You see good news or update with regards to something by book. Many kinds of books that can you decide to try be your object. One of them is Digital Signal Processors: Architectures, Implementations, and Applications.

Cynthia Barksdale:

Reading a book make you to get more knowledge as a result. You can take knowledge and information from the book. Book is prepared or printed or highlighted from each source in which filled update of news. With this modern era like right now, many ways to get information are available for you. From media social similar to newspaper, magazines, science book, encyclopedia, reference book, novel and comic. You can add your knowledge by that book. Ready to spend your spare time to open your book? Or just seeking the Digital Signal Processors: Architectures, Implementations, and Applications when you needed it?

**Download and Read Online Digital Signal Processors:
Architectures, Implementations, and Applications By Sen M. Kuo,
Woon-Seng S. Gan #SE2JP9OCYDM**

Read Digital Signal Processors: Architectures, Implementations, and Applications By Sen M. Kuo, Woon-Seng S. Gan for online ebook

Digital Signal Processors: Architectures, Implementations, and Applications By Sen M. Kuo, Woon-Seng S. Gan Free PDF d0wnl0ad, audio books, books to read, good books to read, cheap books, good books, online books, books online, book reviews epub, read books online, books to read online, online library, greatbooks to read, PDF best books to read, top books to read Digital Signal Processors: Architectures, Implementations, and Applications By Sen M. Kuo, Woon-Seng S. Gan books to read online.

Online Digital Signal Processors: Architectures, Implementations, and Applications By Sen M. Kuo, Woon-Seng S. Gan ebook PDF download

Digital Signal Processors: Architectures, Implementations, and Applications By Sen M. Kuo, Woon-Seng S. Gan Doc

Digital Signal Processors: Architectures, Implementations, and Applications By Sen M. Kuo, Woon-Seng S. Gan Mobipocket

Digital Signal Processors: Architectures, Implementations, and Applications By Sen M. Kuo, Woon-Seng S. Gan EPub